1. Sock Drawer

A drawer contains red socks and black socks. When two socks are drawn at random, the probability that both are red is 12\frac{1}{2}.

  1. How small can the number of socks in the drawer be?
  2. How small if the number of black socks is even?
Solution

我的做法是硬列等式,计算 Δ=p2\Delta=p^2……有点复杂,感觉官方题解的答案更好

假设红袜子有 rr 只,黑袜子有 bb 只,则根据题意有

(r2)(r+b2)=12 \frac{\binom{r}{2}}{\binom{r+b}{2}}=\frac{1}{2}

把组合拆开,写成两个分式的积:

rr+b×r1r+b1=12 \frac{r}{r+b}\times \frac{r-1}{r+b-1}=\frac{1}{2}

根据糖水不等式,有

r1r+b1<rr+b<11 \frac{r-1}{r+b-1}\lt \frac{r}{r+b}\lt \frac{1}{1}

而因为他们的积为 12\frac{1}{2},所以必然一个比 12\frac{1}{\sqrt 2} 大,另一个比之小

r1r+b1<12<rr+b \frac{r-1}{r+b-1}\lt \frac{1}{\sqrt{2}}\lt \frac{r}{r+b}

先考虑 rr+b>12\frac{r}{r+b}\gt \frac{1}{\sqrt{2}},可以化简成

r>(2+1)b r\gt (\sqrt{2}+1)b

同理,不等式的另一边可以化简成

r<(2+1)b+1 r\lt (\sqrt{2}+1)b+1

所以有

(2+1)b+1>r>(2+1)b (\sqrt{2}+1)b+1\gt r\gt (\sqrt{2}+1)b

对于第一问,当 b=1b=1 时,r=3r=3,此时原式为 12\frac{1}{2},故最小袜子数量为 44.

对于第二问,我们只需要考虑 bb 为偶数的情况,枚举几个,发现 b=6,r=15b=6,r=15 符合条件,故此时最小为 2121.

2. Successive Wins

To encourage Elmer’s promising tennis career, his father offers him a prize if he wins (at least) two tennis sets in a row in a three-set series to be played with his father and the club champion alternately: father-champion-father or champion-father-champion, according to Elmer’s choice. The champion is a better player than Elmer’s father. Which series should Elmer choose?

Solution

令 Elmer 对 champion 的胜率为 cc,对 father 的胜率为 ff,根据题意我们知道 c<fc\lt f.

如果选择 CFC 的顺序,那么总的获胜概率为 cf+(1c)fccf+(1-c)fc;相反,若选择 FCF,则获胜概率为 fc+(1f)cffc+(1-f)cf.

两边的第一项相同,而对于第二项,1f<1c1-f\lt 1-c,所以 Elmer 应该选择 Champion-Father-Champion

3. The Flippant Juror

A threo-man jury has two members each of whom independently has probability pp of making the correct decision and a third member who flips a coin for each decision (majority rules). A one-man jury has probability pp of making the correct decision. Which jury has the better probability of making the correct decision?

Solution

one-man jury 有 pp 的概率正确。

考察 three-man jury. 因为是 majority voting,分两种情况

  • 全票通过:此时两个随机决策的人必须正确,另一个必须抛硬币抛出正确,因此概率为 pp12=12p2p\cdot p\cdot \frac{1}{2}=\frac{1}{2}p^2
  • 两票通过:考虑那两个随机决策的人
    • 如果他们都是正确票,那么抛硬币的人必须是错误,概率 12p2\frac{1}{2}p^2
    • 如果他们是一个对一个错,那么抛硬币的必须是正确,概率 12p(1p)+12(1p)p=p(1p)\frac{1}{2}p(1-p)+\frac{1}{2}(1-p)p=p(1-p)(因为他们是不同的人,所以要同时计入 p(1p)p(1-p)(1p)p(1-p)p

加起来就是 pp. 于是发现这两个 jury 的概率相等。

4. Trial Until First Success

On the average, how many times must a die be thrown until one gets a 66?

Solution

当前序列为空,那么下一步有 p=16p=\frac{1}{6} 的概率 roll 到 661p1-p 的概率 roll 不到 66. 所以第 ii 步 roll 到 66 的概率是 (1p)i1p(1-p)^{i-1}p,故期望步数为

E=i=1i(1p)i1p=1p=6 E=\sum_{i=1}^\infin i\cdot (1-p)^{i-1}p=\frac{1}{p}=6

5. Coin in Square

In a common carnival game a player tosses a penny from a distance of about 5 feet onto the surface of a table ruled in 11-inch squares. If the penny (3/43/4 inch in diameter) falls entirely inside a square, the player receives 5 cents but does not get his penny back; otherwise he loses his penny. If the penny lands on the table, what is his chance to win?

Solution

考虑硬币中心可以放的范围,其实是 14×14\frac{1}{4}\times \frac{1}{4} 的一个正方形。所以其概率为几何概率,答案为 116\frac{1}{16}

6. Chuck-a-Luck

Chuck-a-Luck is a gambling game often played at carnivals and gambling houses. A player may bet on anyone of the numbers 1,2,3,4,5,61, 2, 3, 4, 5, 6. Three dice are rolled. If the player’s number appears on one, two, or three of the dice, he receives respectively one, two, or three times his original stake plus his own money back; otherwise he loses his stake. What is the player’s expected loss per unit stake? (Actually the player may distribute stakes on several numbers, but each such stake can be regarded as a separate bet.)

Solution

我们在每个数字上都下注 11 stake,这个等价于分 66 次 stake,而且更加便于计算每个 stake 的期望损失。

  • 如果三个数互不相同,其概率为 6×5×463=120216\frac{6\times 5\times 4}{6^3}=\frac{120}{216},这种情况下的损失为 6+3+3=0-6+3+3=0,平均每个 stake 损失 00
  • 如果有两个数相同,其概率为 (31)×6×563=90216\frac{\binom{3}{1}\times 6\times 5}{6^3}=\frac{90}{216},这种情况下的损失为 6+2+3=1-6+2+3=-1,平均每个 stake 损失 16-\frac{1}{6}
  • 如果三个数都相同,其概率为 6216\frac{6}{216},损失 6+1+3=2-6+1+3=-2,平均每个 stake 损失 26-\frac{2}{6}.

所以期望为

Eloss=120216×0+90216×(16)+6216×(26) \mathbb{E}_{\text{loss}}=\frac{120}{216}\times 0+\frac{90}{216}\times(-\frac{1}{6}) + \frac{6}{216}\times(-\frac{2}{6})

7

A 每次在转盘上的 1313 号位置下注 $1\$1. B 和 A 打赌,如果 AA3636 轮后总体亏钱,那么 A 给 B 2020 美元,否则 B 给 A 2020 美元。求 A 在 3636 轮游戏过后的期望收益。

轮盘赌有 3838 个等概率位置,下注 nn 并且中的话,可以拿到 35n35n 的奖励;否则为 00.

Solution

只要赢一次,即使剩下 3535 轮全输也还会剩 11 美元,所以 A 倒贴钱的概率为全输的概率,即 (3738)360.383(\frac{37}{38})^{36}\approx 0.383.

我们可以把 A 的期望收益看作两部分,一是轮盘赌的钱,二是 B 给 A 的钱。第二部分的期望是

0.383×(20)+0.617×20=4.68 0.383\times (-20) + 0.617 \times 20=4.68

考察第一部分,因为每一轮之间是互相独立的,单轮的期望是

35×1381×3738=238 35\times \frac{1}{38}-1\times \frac{37}{38}=-\frac{2}{38}

3636 轮后的期望收益是

2×3638=1.89 -\frac{2\times 36}{38}=-1.89

所以其总期望收益为 4.681.89=2.794.68-1.89=2.79.

8. Perfect Bridge Hand

在洗好的 5252 张牌里抽 1313 张,恰为同花色的概率为?

Solution

5252 张牌抽 1313 张,一共有 (5213)\binom{52}{13} 种方案(无序),而其中只有 44 个是同花色的,因此答案为 4(5213)\frac{4}{\binom{52}{13}}

一个错误答案是 4×13!(5213)\frac{4\times 13!}{\binom{52}{13}}. 分子上的 13!13! 暗含抽牌顺序,而分母是不含顺序的,因此会导致错误(需要对分子去重,或者让分母也变成有序的)。

9. Craps

The rules are these. Only totals for the two dice count. The player throws
the dice and wins at once if the total for the first throw is 7 or II, loses at
once if it is 2, 3, or 12. Any other throw is called his "point. "* If the first
throw is a point, the player throws the dice repeatedly until he either wins
by throwing his point again or loses by throwing 7. What is the player’s
chance to win?

Solution

首先考虑第一轮:有 836\frac{8}{36} 直接摇到 7,117,11436\frac{4}{36} 的概率摇到 2,3,122,3,12. 在剩下的 2436\frac{24}{36} 的概率里,摇一次得到 xx,获胜的条件是摇到第二次摇到 xx 或者摇到 77 直接输掉,都不是则继续摇

于是我们发现,平局对游戏结果没有任何影响(因为要继续摇骰子)。所以当游戏结束时,要么赢要么输,故赢得概率是 cc+6\frac{c}{c+6},其中 cc 对应 xx 的分解方案数。